Search results

Search for "CO2 reduction" in Full Text gives 15 result(s) in Beilstein Journal of Nanotechnology.

Ni, Co, Zn, and Cu metal-organic framework-based nanomaterials for electrochemical reduction of CO2: A review

  • Ha Huu Do and
  • Hai Bang Truong

Beilstein J. Nanotechnol. 2023, 14, 904–911, doi:10.3762/bjnano.14.74

Graphical Abstract
  • architectures, pronounced porosity, abundant active sites, and well-distributed metallic nodes. This article commences by elucidating the mechanistic aspects of CO2 reduction, followed by a comprehensive exploration of diverse materials encompassing MOFs based on nickel, cobalt, zinc, and copper for efficient
  • CO2 conversion. Finally, a meticulous discourse encompasses the challenges encountered and the prospects envisioned for the advancement of MOF-based nanomaterials in the realm of electrochemical reduction of CO2. Keywords: carbon capture; CO2 reduction; electrocatalysis; metal-organic frameworks
  • valuable compounds through electrochemical reduction. The electrocatalytic process for CO2 reduction reactions (CO2RR) encounters a persistent obstacle in the activation of CO2 [4]. The formation of CO2•− necessitates a high thermodynamic potential of −1.90 V vs the standard hydrogen electrode
PDF
Album
Review
Published 31 Aug 2023

Recent trends in Bi-based nanomaterials: challenges, fabrication, enhancement techniques, and environmental applications

  • Vishal Dutta,
  • Ankush Chauhan,
  • Ritesh Verma,
  • C. Gopalkrishnan and
  • Van-Huy Nguyen

Beilstein J. Nanotechnol. 2022, 13, 1316–1336, doi:10.3762/bjnano.13.109

Graphical Abstract
  • analogies, and future challenges of photocatalysts derived from bismuth-based nanomaterials are also discussed. There are many review reports on synthesis and enhancement techniques of Bi-based photocatalysts and the application of these photocatalysts in hydrogen generation, CO2 reduction, and water
  • capabilities, as illustrated in Figure 2, since their VB potential is much higher than the oxidation potential of H2O, that is, 0.82 V vs NHE. Unfortunately, due to inadequate CB potential energy, most reduction processes, such as CO2 reduction, N2 fixation, and H2 creation, cannot be catalyzed with Bi-based
  • and used as CO2 reduction photocatalysts. This possibility exists since these structures are hollow. It is anticipated that hierarchical Bi-based photocatalysts produced would have a broad range of applications in environmental science and energy research. Different preparation methods have been
PDF
Album
Review
Published 11 Nov 2022

Spindle-like MIL101(Fe) decorated with Bi2O3 nanoparticles for enhanced degradation of chlortetracycline under visible-light irradiation

  • Chen-chen Hao,
  • Fang-yan Chen,
  • Kun Bian,
  • Yu-bin Tang and
  • Wei-long Shi

Beilstein J. Nanotechnol. 2022, 13, 1038–1050, doi:10.3762/bjnano.13.91

Graphical Abstract
  • photocatalyst under UV light irradiation [30]. So far, a large number of MOFs have been shown to exhibit photocatalytic activity in H2 production, organic pollutant degradation, and Cr(VI) and CO2 reduction [26][27][31][32][33]. Among MOF catalysts, MIL101(Fe) is a cage-like structure formed by self-assembly of
PDF
Album
Supp Info
Full Research Paper
Published 28 Sep 2022

Morphology-driven gas sensing by fabricated fractals: A review

  • Vishal Kamathe and
  • Rupali Nagar

Beilstein J. Nanotechnol. 2021, 12, 1187–1208, doi:10.3762/bjnano.12.88

Graphical Abstract
PDF
Album
Supp Info
Review
Published 09 Nov 2021

Boosting of photocatalytic hydrogen evolution via chlorine doping of polymeric carbon nitride

  • Malgorzata Aleksandrzak,
  • Michalina Kijaczko,
  • Wojciech Kukulka,
  • Daria Baranowska,
  • Martyna Baca,
  • Beata Zielinska and
  • Ewa Mijowska

Beilstein J. Nanotechnol. 2021, 12, 473–484, doi:10.3762/bjnano.12.38

Graphical Abstract
  • hydrogen [1][2][3][4], environmental remediation [5][6], decomposition of organic pollutants [7], CO2 reduction into hydrocarbon fuels [8][9][10], disinfection [11][12], and selective organic transformations [13][14]. One of the most studied catalysts is polymeric carbon nitride (PCN). This graphite-like
  • . studied the photoactivity of PCN doped with S in the CO2 reduction reaction. The yield of CH3OH over the unit area of the photocatalyst was almost 2.5 times higher than of pristine PCN [35]. Recently, co-doping of g-C3N4 with two non-metallic elements has been also studied. This strategy can enhance
PDF
Album
Full Research Paper
Published 19 May 2021

Direct observation of oxygen-vacancy formation and structural changes in Bi2WO6 nanoflakes induced by electron irradiation

  • Hong-long Shi,
  • Bin Zou,
  • Zi-an Li,
  • Min-ting Luo and
  • Wen-zhong Wang

Beilstein J. Nanotechnol. 2019, 10, 1434–1442, doi:10.3762/bjnano.10.141

Graphical Abstract
  • ][2][3], and pyroelectric and non-linear optical properties [4][5]. Recently, Bi2WO6 has shown good performance in the degradation of organic compounds [6][7][8], and photocatalytic oxygen evolution [9][10] and CO2 reduction [11][12][13] under visible-light irradiation. Bi2WO6 is the simplest member
PDF
Album
Supp Info
Full Research Paper
Published 18 Jul 2019

Synthesis of novel C-doped g-C3N4 nanosheets coupled with CdIn2S4 for enhanced photocatalytic hydrogen evolution

  • Jingshuai Chen,
  • Chang-Jie Mao,
  • Helin Niu and
  • Ji-Ming Song

Beilstein J. Nanotechnol. 2019, 10, 912–921, doi:10.3762/bjnano.10.92

Graphical Abstract
  • photogenerated charge carriers and further improve the performance of photocatalysts. Wang et al. synthesized In2S3–CdIn2S4 nanotubes with hierarchical heterostructure by a self-templated method, which exhibited efficient and stable photocatalytic activity of CO2 reduction under visible-light irradiation [32
PDF
Album
Full Research Paper
Published 18 Apr 2019

Mo-doped boron nitride monolayer as a promising single-atom electrocatalyst for CO2 conversion

  • Qianyi Cui,
  • Gangqiang Qin,
  • Weihua Wang,
  • Lixiang Sun,
  • Aijun Du and
  • Qiao Sun

Beilstein J. Nanotechnol. 2019, 10, 540–548, doi:10.3762/bjnano.10.55

Graphical Abstract
  • ), including Sc to Zn, Mo, Ru, Rh, Pd and Ag, supported on a boron nitride (BN) monolayer with boron vacancies, were investigated as electrocatalysts for the CO2 reduction reaction (CRR) using comprehensive density functional theory (DFT) calculations. The results demonstrate that a single-Mo-atom-doped boron
  • and commodity chemicals [6]. For example, CO2 can be converted to methane, methanol and formic acid, and all of which can be used as energy sources and chemical materials at the global scale [7][8][9][10][11]. In this sense, the CO2 reduction reaction (CRR) by electrochemical methods is promising
  • efficient materials for CO2 capture and gas separation [35][47]. The excellent performance of BN nanomaterials in various applications have inspired us to study whether the materials can be efficient catalysts for CO2 reduction. To answer this question, we have screened possible SACs involving fifteen TMs
PDF
Album
Supp Info
Full Research Paper
Published 22 Feb 2019

Reduced graphene oxide supported C3N4 nanoflakes and quantum dots as metal-free catalysts for visible light assisted CO2 reduction

  • Md Rakibuddin and
  • Haekyoung Kim

Beilstein J. Nanotechnol. 2019, 10, 448–458, doi:10.3762/bjnano.10.44

Graphical Abstract
  • promising for CO2 photoreduction because of their excellent activity and environmental sustainability. Keywords: CO2 reduction; metal-free hybrid; nanoflakes; photocatalyst; quantum dots; Introduction The solar-light-assisted photocatalytic reduction of CO2 into useful chemicals, such as HCOOH, HCHO, CH4
  • of photo-induced electron–hole pairs and insufficient adsorption of CO2 at the catalyst surface are crucial problems preventing effective catalyst performance and CO2 reduction [11]. An ideal photocatalyst for CO2 conversion should possess a narrow bandgap and good light-harvesting properties, proper
  • attention in recent years for CO2 reduction and water splitting applications [12][13][14][15][16][17]. Both g-C3N4 and rGO have a two-dimensional sheet structure with high surface area and possess appropriate band edges for CO2 reduction. Also, g-C3N4 and rGO are inexpensive and easy to synthesize. Despite
PDF
Album
Supp Info
Full Research Paper
Published 13 Feb 2019

Recent highlights in nanoscale and mesoscale friction

  • Andrea Vanossi,
  • Dirk Dietzel,
  • Andre Schirmeisen,
  • Ernst Meyer,
  • Rémy Pawlak,
  • Thilo Glatzel,
  • Marcin Kisiel,
  • Shigeki Kawai and
  • Nicola Manini

Beilstein J. Nanotechnol. 2018, 9, 1995–2014, doi:10.3762/bjnano.9.190

Graphical Abstract
PDF
Album
Review
Published 16 Jul 2018

Uniform cobalt nanoparticles embedded in hexagonal mesoporous nanoplates as a magnetically separable, recyclable adsorbent

  • Can Zhao,
  • Yuexiao Song,
  • Tianyu Xiang,
  • Wenxiu Qu,
  • Shuo Lou,
  • Xiaohong Yin and
  • Feng Xin

Beilstein J. Nanotechnol. 2018, 9, 1770–1781, doi:10.3762/bjnano.9.168

Graphical Abstract
  • shown in Figure 4D, the pore size distribution regions of three samples prepared using different carbonization temperatures are mainly located between ≈7–25 nm. The higher carbonization temperature would lead to larger mesopores owing to the consumption of the surface carbon layer for the Co2+ reduction
PDF
Album
Supp Info
Full Research Paper
Published 13 Jun 2018

Cr(VI) remediation from aqueous environment through modified-TiO2-mediated photocatalytic reduction

  • Rashmi Acharya,
  • Brundabana Naik and
  • Kulamani Parida

Beilstein J. Nanotechnol. 2018, 9, 1448–1470, doi:10.3762/bjnano.9.137

Graphical Abstract
  • considerable attention. The applications of photocatalysis, such as water splitting, CO2 reduction, pollutant degradation, organic transformation reactions, N2 fixation, etc., towards solving the energy crisis and environmental issues are briefly discussed in the Introduction of this review. The advantages of
PDF
Album
Review
Published 16 May 2018

Review on optofluidic microreactors for artificial photosynthesis

  • Xiaowen Huang,
  • Jianchun Wang,
  • Tenghao Li,
  • Jianmei Wang,
  • Min Xu,
  • Weixing Yu,
  • Abdel El Abed and
  • Xuming Zhang

Beilstein J. Nanotechnol. 2018, 9, 30–41, doi:10.3762/bjnano.9.5

Graphical Abstract
  • CO2 reduction [26] and photo-coenzyme regeneration [27] (see Figure 2), which are promising solutions to the energy crisis, greenhouse effect and food shortage, respectively [24][26][28][29][30][31][32][33][34][35][36][37][38][39][40][41][42][43][44][45]. Photocatalytic water splitting aims to convert
  • water splitting. As a renewable and nontoxic gas, hydrogen works not only as a clean fuel but also as a feedstock for important chemical production, such as ammonia and methanol. Similarly, light-driven CO2 reduction has great potential as a clean fuel supplier, especially for the production of methanol
  • review will start with a brief introduction on the mechanisms of photocatalysis-based APS (water splitting, CO2 reduction and coenzyme regeneration). Then we will introduce the representative designs of these three areas with an emphasis on how they help solve the existing problems in their respective
PDF
Album
Review
Published 04 Jan 2018

Hydrothermal synthesis of ZnO quantum dot/KNb3O8 nanosheet photocatalysts for reducing carbon dioxide to methanol

  • Xiao Shao,
  • Weiyue Xin and
  • Xiaohong Yin

Beilstein J. Nanotechnol. 2017, 8, 2264–2270, doi:10.3762/bjnano.8.226

Graphical Abstract
  • production rate was found to increase to 1539.77 μmol/g/h. Thus, the ZnO quantum dots obviously prompted separation of charge carriers, which was explained by a proposed mechanism for this photocatalytic reaction. Keywords: CO2 reduction; KNb3O8 nanosheets; methanol production; photocatalysis; ZnO quantum
PDF
Album
Full Research Paper
Published 30 Oct 2017

Selective photocatalytic reduction of CO2 to methanol in CuO-loaded NaTaO3 nanocubes in isopropanol

  • Tianyu Xiang,
  • Feng Xin,
  • Jingshuai Chen,
  • Yuwen Wang,
  • Xiaohong Yin and
  • Xiao Shao

Beilstein J. Nanotechnol. 2016, 7, 776–783, doi:10.3762/bjnano.7.69

Graphical Abstract
  • the good crystallinity, morphology and proper amount of CuO loading, which functioned as reductive sites for selective formation of methanol. The reaction mechanism was also proposed and explained by band theory. Keywords: CO2 reduction; CuO loading; isopropanol; NaTaO3 nanocubes; photocatalysis
  • cocatalyst for CO2 reduction, promoting charge transfer and limiting the fast recombination of electrons and holes [20][21]. According to the literature, Cu oxides and Cu cations are active cocatalysts for CO2 reduction and could serve as reductive sites for selective reduction of CO2 to methanol [22][23][24
  • examined by a GC-MS (Agilent 5975C) and quantified by a GC (Agilent 7890A, FID, HP-WAX 60 m column). Control experiments were also carried out to confirm that methanol generation was complete in the CO2 reduction. Neither methanol nor acetone was detected in dark or in the absence of catalyst. When N2 was
PDF
Album
Full Research Paper
Published 01 Jun 2016
Other Beilstein-Institut Open Science Activities